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Fluctuation of the number of particles adsorbed on surfaces under the influence of gravity
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The fluctuation of the number of particles deposited under a significant gravity field onto systems of

finite size is analyzed experimentally and theoretically.
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In particular, the variance o* varies as

1—{a)6*+0(6* with the coverage 0, where {a) depends upon the interactions involved in the deposi-
tion process. This result is valid for any deposition process in which the gravity is “strong enough,” re-
gardless of the radial distribution function corresponding to the process. This conclusion, of interest to a
large class of deposition processes, is supported by original experimental results.

PACS number(s): 68.10.Jy, 05.40.+j, 47.15.Gf

The adsorption-adhesion of colloidal particles or pro-
teins on solid surfaces is often an irreversible process in
that, once adsorbed, the particles neither diffuse on the
surface nor desorb from it. This irreversible character
excludes the use of general results derived from equilibri-
um statistical mechanics [1]. The study of these process-
es is therefore particularly challenging from a theoretical
point of view, and different models have been proposed to
describe them. The most popular model is that of ran-
dom sequential adsorption (RSA), which has been used to
account for the adsorption of proteins on solid surfaces
[2,3]. However, for large particles (diameter > 1 um) ob-
served under an optical microscope, gravity usually plays
an important role and the ballistic model seems more ap-
propriate than RSA [4].

Despite the large number of theoretical resuits in this
field, experimental studies are still rare. This is due, in
part, to the difficulty of performing them reproducibly.
In addition to the first results of Feder and Giaever [2],
Ramsden has attempted to verify the validity of RSA for
the adsorption of proteins on surfaces [3,5]. Adamczyk
et al. have shown, by comparing experimental radial dis-
tribution functions g () to their simulated counterparts,
that the RSA model can also account for the adsorption
of colloidal particles on solid surfaces [6].

For large and dense particles, it has been recently
verified that the ballistic model correctly describes the
statistical properties of the deposition of such particles on
surfaces [4]. This conclusion was based on the agreement
between the experimental values and the predictions of
the model, at different coverages, for both g(r) and the
variance o2 of the number of deposited particles, on finite
areas. This variance corresponds to v squares of area a
constituting a representative part, of area 4 =wva, of the
whole adsorbing surface. However, small discrepancies
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were still observed at low or intermediate coverages be-
tween the experimental radial distribution functions and
those simulated by assuming a ballistic deposition pro-
cess. These discrepancies were attributed to either the
polydispersity of the particles or hydrodynamic interac-
tions, not incorporated in the ballistic model. Recent
simulations performed in the (1+ 1)-dimensional case by
Pagonabarraga and Rubi [7] for the ballistic deposition
process, taking into account hydrodynamic interactions
(HI’s) between the adsorbing particles and (i) those al-
ready adsorbed, and (ii) the adsorption plane, showed
that deviations from the ballistic model are indeed intro-
duced by HI’s. More precisely, HI’s tend to repel the ad-
sorbing particle from those already adsorbed. The radial
distribution function is thus affected by HI’s during the
deposition process. This appears, however, to contradict
the good agreement between the variance found experi-
mentally and that predicted by the ballistic model [4].
Indeed, o2 is a function of the mean number of adsorbed
particles (n) and of the radial distribution function
through the relation [8]

0.2

(n)

where p represents the density of adsorbed particles on
the surfaces, i.e, p=(n ) /a. Using this relation and the
expression for g(r) given by Thompson and Glandt [9]
for the case of ballistic deposition, it can be shown
rigorously that for this model

:1+pf0w[g(r)——1]27rrdr , (1)

a? — 3 4
T3 1+kp’+0(p*), (2)
where k is a constant. The ballistic model describes the
adsorption of spheres that are considered infinitely heavy;
an incoming particle is allowed to roll over one or more
previously adsorbed ones. Equation (2) assumes that the
adsorbing surface is subdivided into an infinitely large
number of large subsystems, so that v— o0 and edge
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effects are negligible. In this paper we show that as long
as the gravitational force acting on the diffusing particle
is “strong enough,” 02/{n ) continues to be given by Eq.
(2), independent of the radial distribution function. In
particular, no terms in p and p? appear in o2/{n ), which
should then have a horizontal tangent at {n ) =0, as ob-
served experimentally [4]. The constant k, on the other
hand, should depend upon the deposition mechanism.
We compare this theoretical result, which is of general
validity, with the results of experiment and explore the
dependence of k on both particle size (radius R or diame-
ter d =2R) and density.

For the experimental determination of o%/{n), we
take a large number of pictures of small sections of a
large surface covered with particles. Each picture can be
considered a subsystem of the covered surface. The en-
semble of these subsystems is the analog of the grand
canonical ensemble in equilibrium statistical mechanics.
Consider a given subsystem, and let n be the number of
particles in this subsystem at time ¢. Select a given parti-
cle (i) out of the n particles of the subsystem. Let
P,(r,t)27r dr be the probability of finding, at time ¢, the
center of another adsorbed particle in the circular an-
nulus of radius r, of area 27r dr, centered on particle (i).
The integral f o P:(r,t)27r dr represents then the mean
number of partxc]es adsorbed in a disk C of radius A,
whose center coincides with the center of particle (i).
The dependence of this number on time ¢ satisfies the
equation

dtf P(r,t2mr dr=mA*[1—h,(A,p)] , 3)

where h;(A,p) is the probability that a particle hitting
will not adsorb on it. When the gravitational effect is
“strong enough,” a particle moving toward the adsorp-
tion plane will eventually adsorb with probability unity,
unless it is intercepted by a trap out of which it cannot
diffuse and which prevents the particle from reaching
that plane. Such traps are composed of at least three ad-
sorbed particles (Fig. 1). In disk C of radius A one can
distinguish two kinds of traps: (a) the first contains the
particle (i) and two other particles. This implies that the
probability p/! that a particle arriving over disk C will
fall within a trap of type I is of the form

P'=3Cy Zik 2 0(p%) )
A

where C; kp represents the probability of finding in disk
C around particle (i) a configuration k of three particles,
whose excluded area is a;;. The coefficient C;, is in-
dependent of A for A larger than 2d. (b) Traps of type 11
consist of at least three particles different from particle
(i). The probability p/™ that a particle arriving over disk
C will fall within a trap of type II is then given by

‘")—20 £p3+0(pY) (5)

where D; «P° represents the probability of finding in disk
C around particle (i) a configuration k whose excluded
area is fB; ;. In order to use p instead of ¢ as the parame-
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FIG. 1. Excluded areas of types I and II. Type I: the shaded
area represents the excluded surface a,; for the ballistic case,
formed by three particles, one of which is particle (i). Type II:
the shaded area represents the excluded surface B,; for the
ballistic case, formed by at least three particles different from
particle (i). The traps are included inside a large circle C of ra-
dius A and centered on particle (7).

ter indicating the progress of the adsorption process, one
introduces the available surface function ® through the
relation

d_dp d _4d

dt dt dp dp *
Due to the fact that only traps of at least three adsorbed
particles can prevent an incoming particle from reaching
the surface, the reasoning of Thompson and Glandt for

the ballistic model implies that ®=1+0(p*). To the
lowest order in p, the relation (3) then takes the form

(6)

d rA o (e;) , s
EFfo Pi(rpR2mr dr=mA? |1—=—p*+0(p") |, (7)
where (a; ) is given by 3, C; ya; . This relation can be
integrated to give

(a;)
foAP,-(r,p)Zﬂr dr=mA? —an3+0(p4) . (8)

Taking the average of both sides of Eq. (8) over all the
particles of all the subsystems, leads to

foAP(r,p)Zﬂ'r dr=mA*— (a)

~—Lp3+0(p* , ©
where (a) represents the mean value of the {c;) taken
over all particles (i). P(r,p) is related to the radial distri-
bution function g (r,p) through P(r,p)=pg(r,p). Equa-
tion (9) can then be rewritten as

f plg(r,p )—l]Zﬂrdr——ﬁ 40" . (10

But only the traps consisting of three particles, one of
them being the ‘“center” particle, contribute to the term
in p% in Eq. (10). {a) is thus independent of A as long as
A exceeds 2d. The integral between O and A can then be
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extended from O to . Thus, the relation (1) giving the
variance assumes the form

o _ (a) ; 4

) 1 3 p°+0(p*) . (11)
This result is a general law and applies to all deposition
processes as long as the gravity is “strong enough.” In
particular, it applies to ballistic deposition since it can be
calculated directly from Eq. (1) using the expressions for
the radial distribution function g (r) given by Thompson
and Glandt. But it also applies to the real deposition
mechanism in which hydrodynamic interactions are al-
ways present and which do not lead to the function g (7)
predicted by the ballistic model.

One might inquire about what sort of particles satisfy
the condition that gravity be “strong enough” for the de-
rived law to apply. Qualitatively, it seems that for this
result to be valid, the Boltzmann factor must be small:
exp[ —2R (4mR3Ap,g /3kT)] << 1, where R is the particle
radius and Ap, the difference between the specific mass
of the particle and that of the solvent. kT has the usual
meaning, while g =9.81 m s~ 2 is the acceleration of grav-
ity. This criterion can also be written exp(—2R **) <<1,
where R*=R[47Ap,g /3kT]"* is a dimensionless re-
duced particle radius [10]. A series of three experiments
has been performed to verify these results. The deposi-
tion of three kinds of particles, each having a different
value of R *, has been studied by means of optical micros-
copy. The variance has been determined for each kind of
particle as a function of the number of particles adsorbed
on surfaces of finite size. The experimental procedure for
determining the variance is similar to that described in
Ref. [4]. The particles having R*=3.4 are melamine
particles synthesized in the laboratory by the method de-
scribed in Ref. [4]. These particles have a mean radius R
of 2.3 um, measured by a Coulter counter, and a density
pp of 1.5. The two other types of particles are sulfate lat-
tices from Interfacial Dynamics Corp. (Portland, OR).
Those with R*=2.9 (R =3.38 um, p,=1.055; cat no.
2-234-54) and 1.8 (R=2.1 pum, pp= 1.055; cat no. 2-356-
97) had surface charges of —3.80 uC/cm? and
—5.12 uC/cm?,  respectively  (certified by  the
manufacturer). For the melamine particles, the adsorp-
tion procedure was identical to that in Ref. [4]. Due to
the negative surface charge of both the latex particles and
the silica surface, the same procedure could not be used
for the other particles. Their solutions were diluted with
deionized super-Q Millipore water containing 1073 M of
NaCl, pH around 4, and with 107* M of NaCl, pH
around 5.7 for the particles of radius R*=1.8 and 2.9,
respectively. The adsorption substrate consisted of a
glass microscope slide precoated with a layer of fibrino-
gen. The role of this protein was to create a positive
charge on the surface in order to bind the particles ir-
reversibly to the substrate. The latex solution was then
introduced in the deposition cell as described in Ref. [4].
Using these procedures, the particles could be irreversi-
bly fixed to the surface once they reached it.

For each type of particle, R * is different, so that the
role of Brownian motion during deposition was different.
It was thus expected that g(r) should be different, at a
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FIG. 2. Experimental radial distribution function g(r) for
three types of particles corresponding to R*=3.4
( ® ), 2.9 ( n ),and 1.8 (—— A ——), as
a function of the ratio of the center-to-center distance r between
two particles to their diameter.
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FIG. 3. Evolution of 0?/{n) with (n)/{n,,,) on a finite
system, o? being the variance the number of particles on finite
systems. (n) represents the mean number of particles per sys-
tem, and (7,,,) the mean maximum number of particles that
can be deposited on the systems. Three systems with different
renormalized radii R* are investigated: R *=3.4 (@), 2.9 (W),
and 1.8 ( A ). The solid line corresponds to the best fit of
fl(x)=1—w;x3+wyx* with x={(n)/{ny,,), wy;~1.93, and
w,~1.04, to the experimental data. The long-dash line corre-
sponds to the best fit of f'(x)=1—w,x?+w,x> to the experi-
mental data, obtained with w,~0.628 and w;~ —0.276. The
short-dash line corresponds to the best fit of the ballistic expres-
sion 1-2.187767x°+w,x* to the experimental data, with
wy=~1.32.




s1 FLUCTUATION OF THE NUMBER OF PARTICLES ADSORBED . . . 4295

given coverage, for different particles (Fig. 2). Neverthe-
less, Fig. 3 shows that o2/{n) behaves the same when
plotted as a function of {n ) /{n,,, ) independent of par-
ticle type. Moreover, the horizontal tangent to this curve
for small {n)/{ny,, ) does indeed indicate the absence
of the term linear in p in relation (10). In addition, the
fact that the three curves corresponding to three different
radii R* are identical within the experimental error
demonstrates that, in the range of R* investigated, (a)
does not vary significantly. The dependence of o2/{n )
on (n)/{nmy, ) has been fitted to functions of the type
f(x)=1—wyx3+w,x* where w; and w, are fitting pa-
rameters, as is expected from theoretical grounds. The
parameter w; in f'(x) is directly proportional to {a).
The solid line in Fig. 3 is obtained for w;~1.93 and
wy~1.04. The short-dash line corresponds to the ballis-
tic deposition for which o2/{n ) has the same form as
f'(x) [11]. Its first nonvanishing term is 2.187 767x3; the
second one is obtained by fitting (w,~1.32). In order to
determine how sensitive the fitting function to our mea-
surements is, we have also plotted them with the fitting
function f"(x)=1—w,x?+w;x3, where w, and w; are
fitting parameters. The long-dash line is obtained for
w,~0.628 and w;~= —0.276. Inspection of Fig. 3 clearly
reveals that from our experimental data we cannot
demonstrate that w, vanishes. However, this figure also
shows that the three experimental systems investigated in
the present study by no means contradict the hypothesis
that their reduced variance may be accounted for by a
general law of the type of Eq. (11). In addition, it is
shown that our experimental data are fully compatible

with the results predicted by the ballistic model. This im-
plies that hydrodynamic interactions play only a minor
role in the evolution of the reduced variance with
(n)/{ny, ). The question concerning how (a), and
hence w; in f'(x), will change when going from the
ballistic model to deposition processes that include HI’s
is under study and will be reported in a later paper.

This article has presented experimental evidence that
three types of colloidal particles of different sizes and
densities are indistinguishable within the statistical un-
certainties from the point of view of the fluctuation of the
number of particles (o?/{n )) irreversibly deposited onto
subareas of silica slides. In contrast, their respective ra-
dial distribution functions g () are significantly different.
It is also shown that the experimental values of o2/{(n )
agree with the hypothesis that the deposition process fol-
lows the ballistic mechanism for the three types of parti-
cles used.
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